Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Saudi J Biol Sci ; 31(6): 103999, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38646564

RESUMO

Bacterial contamination and infection widely affect the food, pharmaceutical and biomedical industries. Additionally, these bacteria developed resistance to synthetic antibiotics causing public health danger, globally. Natural plant extracts (NPE) are suitable alternatives to synthetic antibiotics to tackle antimicrobial resistance problems. Furthermore, a blend or combination of different NPEs exerts a wide spectrum of antimicrobial activity. Therefore, the combined effect of brazilin-rich extract (BRE) and lawsome methyl ether (LME) against infection-causing common bacteria were evaluated. BRE had a lower minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against most of the Gram-negative bacteria (Salmonella typhi, Salmonella typhimurium and Pseudomonas aeruginosa) while LME was active against most of the Gram-positive bacteria (Bacillus subtilis, Staphylococcus aureus, and Staphylococcus epidermidis). The combination of BRE and LME at 2:1 and 1:1 concentration significantly reduced the MIC value of each compound as compared to either BRE or LME concentration alone (P < 0.05). Further time-kill kinetics revealed a 3.0-3.5 log reduction in Gram-positive bacteria and a 2.5-3.0 log reduction in Gram-negative bacteria during 120 min of incubation, respectively. Therefore, a combination of BRE and LME was recommended as natural antibacterial to synthetic antibiotics for food and pharmaceutical applications.

2.
Phytother Res ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600726

RESUMO

The anti-inflammatory and immunosuppressive activities of plant secondary metabolites are due to their diverse mechanisms of action against multifarious molecular targets such as modulation of the complex immune system associated with rheumatoid arthritis (RA). This review discussed and critically analyzed the potent anti-inflammatory and immunosuppressive effects of several phytochemicals and their underlying mechanisms in association with RA in experimental studies, including preliminary clinical studies of some of them. A wide range of phytochemicals including phenols, flavonoids, chalcones, xanthones, terpenoids, alkaloids, and glycosides have shown significant immunosuppressive and anti-inflammatory activities in experimental RA models and a few have undergone clinical trials for their efficacy and safety in reducing RA symptoms and improve patient outcomes. These phytochemicals have potential as safer alternatives to the existing drugs in the management of RA, which possess a wide range of serious side effects. Sufficient preclinical studies on safety and efficacy of these phytochemicals must be performed prior to proper clinical studies. Further studies are needed to address the barriers that have so far limited their human use before the therapeutic potential of these plant-based chemicals as anti-arthritic agents in the treatment of RA is fully realized.

3.
BMC Complement Med Ther ; 24(1): 129, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521901

RESUMO

BACKGROUND: The potent antiplasmodial activity of 1-hydroxy-5,6,7-trimethoxyxanthone (HTX), isolated from Mammea siamensis T. Anders. flowers, has previously been demonstrated in vitro. However, its in vivo activity has not been reported. Therefore, this study aimed to investigate the antimalarial activity and acute toxicity of HTX in a mouse model and to evaluate the pharmacokinetic profile of HTX following a single intraperitoneal administration. METHODS: The in vivo antimalarial activity of HTX was evaluated using a 4-day suppressive test. Mice were intraperitoneally injected with Plasmodium berghei ANKA strain and given HTX daily for 4 days. To detect acute toxicity, mice received a single dose of HTX and were observed for 14 days. Additionally, the biochemical parameters of the liver and kidney functions as well as the histopathology of liver and kidney tissues were examined. HTX pharmacokinetics after intraperitoneal administration was also investigated in a mouse model. Liquid chromatography triple quadrupole mass spectrometry was used to quantify plasma HTX and calculate pharmacokinetic parameters with the PKSolver software. RESULTS: HTX at 10 mg/kg body weight significantly suppressed parasitemia in malaria-infected mice by 74.26%. Mice treated with 3 mg/kg HTX showed 46.88% suppression, whereas mice treated with 1 mg/kg displayed 34.56% suppression. Additionally, no symptoms of acute toxicity were observed in the HTX-treated groups. There were no significant alterations in the biochemical parameters of the liver and kidney functions and no histological changes in liver or kidney tissues. Following intraperitoneal HTX administration, the pharmacokinetic profile exhibited a maximum concentration (Cmax) of 94.02 ng/mL, time to attain Cmax (Tmax) of 0.5 h, mean resident time of 14.80 h, and elimination half-life of 13.88 h. CONCLUSIONS: HTX has in vivo antimalarial properties against P. berghei infection. Acute toxicity studies of HTX did not show behavioral changes or mortality. The median lethal dose was greater than 50 mg/kg body weight. Pharmacokinetic studies showed that HTX has a long elimination half-life; hence, shortening the duration of malaria treatment may be required to minimize toxicity.


Assuntos
Antimaláricos , Malária , Mammea , Camundongos , Animais , Antimaláricos/toxicidade , Extratos Vegetais/toxicidade , Malária/tratamento farmacológico , Flores , Peso Corporal
4.
PLoS One ; 19(1): e0296756, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38206944

RESUMO

The emergence and spread of antimalarial drug resistance have become a significant problem worldwide. The search for natural products to develop novel antimalarial drugs is challenging. Therefore, this study aimed to assess the antimalarial and toxicological effects of Chan-Ta-Lee-La (CTLL) and Pra-Sa-Chan-Dang (PSCD) formulations and their plant ingredients. The crude extracts of CTLL and PSCD formulations and their plant ingredients were evaluated for in vitro antimalarial activity using Plasmodium lactate dehydrogenase enzyme and toxicity to Vero and HepG2 cells using the tetrazolium salt method. An extract from the CTLL and PSCD formulations exhibiting the highest selectivity index value was selected for further investigation using Peter's 4-day suppressive test, curative test, prophylactic test, and acute oral toxicity in mice. The phytochemical constituents were characterized using gas chromatography-mass spectrometry (GC-MS). Results showed that ethanolic extracts of CTLL and PSCD formulations possessed high antimalarial activity (half maximal inhibitory concentration = 4.88, and 4.19 g/mL, respectively) with low cytotoxicity. Ethanolic extracts of the CTLL and PSCD formulations demonstrated a significant dose-dependent decrease in parasitemia in mice. The ethanolic CTLL extract showed the greatest suppressive effect after 4 days of suppressive (89.80%) and curative (35.94%) testing at a dose of 600 mg/kg. Moreover, ethanolic PSCD extract showed the highest suppressive effect in the prophylactic test (65.82%) at a dose of 600 mg/kg. There was no acute toxicity in mice treated with ethanolic CTLL and PSCD extracts at 2,000 mg/kg bodyweight. GC-MS analysis revealed that the most abundant compounds in the ethanolic CTLL extract were linderol, isoborneol, eudesmol, linoleic acid, and oleic acid, whereas ethyl 4-methoxycinnamate was the most commonly found compound in the ethanolic PSCD extract, followed by 3-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-4H-chromen-4-one, flamenol, oleic acid amide, linoleic acid, and oleic acid. In conclusions, ethanolic CTLL and PSCD extracts exhibited high antimalarial efficacy in vitro. The ethanolic CTLL extract at a dose of 600 mg/kg exhibited the highest antimalarial activity in the 4-day suppressive and curative tests, whereas the ethanolic PSCD extract at a dose of 600 mg/kg showed the highest antimalarial activity in the prophylactic test.


Assuntos
Antimaláricos , Malária , Animais , Camundongos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Antimaláricos/química , Ácido Linoleico , Ácido Oleico/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Malária/tratamento farmacológico , Misturas Complexas/farmacologia , Plasmodium berghei
5.
Lett Appl Microbiol ; 76(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37898554

RESUMO

Citrus essential oils (EOs) have shown significant antibacterial activity. The present study was undertaken to evaluate the antibacterial activity of the peel oils of Citrus microcarpa and C. x amblycarpa against Escherichia coli. The minimum inhibition concentration (MIC) was determined by using the broth microdilution assay. The checkerboard method was used to identify synergistic effects of the EOs with tetracycline, while bacteriolysis was assessed by calculating the optical density of the bacterial supernatant, crystal violet assay was used to assess their antibiofilm. Ethidium bromide accumulation test was employed to assess efflux pump inhibition. Electron microscope analysis was performed to observe its morphological changes. The EOs of C. microcarpa and C. x amblycarpa were found to contain D-limonene major compound at 55.78% and 46.7%, respectively. Citrus microcarpa EOs exhibited moderate antibacterial against E. coli with a MIC value of 200 µg/mL. The combination of C. microcarpa oil (7.8 µg/mL) and tetracycline (62.5 µg/mL) exhibited a synergy with FICI of 0.5. This combination inhibited biofilm formation and disrupt bacterial cell membranes. Citrus microcarpa EOs blocked the efflux pumps in E. coli. Citrus microcarpa EOs demonstrated promising antibacterial activity, which can be further explored for the development of drugs to combat E. coli.


Assuntos
Citrus , Óleos Voláteis , Bacteriólise , Escherichia coli , Antibacterianos/farmacologia , Tetraciclina/farmacologia , Óleos Voláteis/farmacologia , Biofilmes
6.
Genomics Inform ; 21(3): e31, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37813627

RESUMO

Multiple myeloma (MM) is a hematological malignancy. It is widely believed that genetic factors play a significant role in the development of MM, as investigated in numerous studies. However, the application of genomic information for clinical purposes, including diagnostic and prognostic biomarkers, remains largely confined to research. In this study, we utilized genetic information from the Genomic-Driven Clinical Implementation for Multiple Myeloma database, which is dedicated to clinical trial studies on MM. This genetic information was sourced from the genome-wide association studies catalog database. We prioritized genes with the potential to cause MM based on established annotations, as well as biological risk genes for MM, as potential drug target candidates. The DrugBank database was employed to identify drug candidates targeting these genes. Our research led to the discovery of 14 MM biological risk genes and the identification of 10 drugs that target three of these genes. Notably, only one of these 10 drugs, panobinostat, has been approved for use in MM. The two most promising genes, calcium signal-modulating cyclophilin ligand (CAMLG) and histone deacetylase 2 (HDAC2), were targeted by four drugs (cyclosporine, belinostat, vorinostat, and romidepsin), all of which have clinical evidence supporting their use in the treatment of MM. Interestingly, five of the 10 drugs have been approved for other indications than MM, but they may also be effective in treating MM. Therefore, this study aimed to clarify the genomic variants involved in the pathogenesis of MM and highlight the potential benefits of these genomic variants in drug discovery.

7.
Genomics Inform ; 21(2): e26, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37704211

RESUMO

Stevens-Johnson syndrome (SJS) produces a severe hypersensitivity reaction caused by Herpes simplex virus or mycoplasma infection, vaccination, systemic disease, or other agents. Several studies have investigated the genetic susceptibility involved in SJS. To provide further genetic insights into the pathogenesis of SJS, this study prioritized high-impact, SJS-associated pathogenic variants through integrating bioinformatic and population genetic data. First, we identified SJS-associated single nucleotide polymorphisms from the genome-wide association studies catalog, followed by genome annotation with HaploReg and variant validation with Ensembl. Subsequently, expression quantitative trait locus (eQTL) from GTEx identified human genetic variants with differential gene expression across human tissues. Our results indicate that two variants, namely rs2074494 and rs5010528, which are encoded by the HLA-C (human leukocyte antigen C) gene, were found to be differentially expressed in skin. The allele frequencies for rs2074494 and rs5010528 also appear to significantly differ across continents. We highlight the utility of these population-specific HLA-C genetic variants for genetic association studies, and aid in early prognosis and disease treatment of SJS.

8.
Adv Pharmacol Pharm Sci ; 2023: 6624040, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37745261

RESUMO

Drug resistance remains a significant problem that threatens antimalarial drug treatment. Hence, the challenge is to find new effective antimalarial drugs. Based on our previous study, aqueous extracts of trisamo (TSM) and jatu-phala-tiga (JPT) had good in vitro antimalarial activities, and these recipes contain multiple beneficial pharmacological effects that could be useful for malaria therapy. Therefore, this study aimed to investigate the antimalarial activity and toxicity of the aqueous extracts of TSM and JPT in mouse models. The aqueous extractions were carried out using the decoction method. Compound identification was conducted using LC-QTOF-MS analysis. The antimalarial activities of TSM and JPT at doses 200, 400, and 600 mg/kg were evaluated against Plasmodium berghei ANKA infection using a four-day suppressive test. The toxic effects of oral administration of the extracts at 2 g/kg dose were determined using an acute toxicity test. The chemical constituents of TSM contained 83 compounds, whereas JPT contained 84 compounds. All doses of the extracts exhibited a significant suppression (p < 0.05) of the parasite compared to the negative control in a four-day test. The maximum activities were observed at 600 mg/kg dose with 67.02% suppression for TSM and 79.34% for JPT, followed by 400 mg/kg dose (57.63% for TSM and 64.79% for JPT) and then 200 mg/kg dose (52.35% for TSM and 54.46% for JPT). In addition, there were no significant differences (p < 0.05) in the RBC, MCV, and MCH levels of mice receiving JPT extract compared to the uninfected control. The WBC level of mice receiving 400 and 600 mg/kg of TSM, and 200 and 400 mg/kg of JPT, was significantly (p < 0.05) lower than the infected control, and the extracts did not significantly prevent the loss of platelets. For the acute toxicity test, there were no signs of toxicity or deaths in mice, and there were no differences in the histology, weight, or enzyme biochemistry of the liver and kidney between the extract and vehicle groups. However, the platelet count in the extract-treated mice was significantly higher than that in the control group. In conclusion, this study suggests that aqueous extracts of TSM and JPT have potent antimalarial activities and could be promising as new candidates for antimalarial drug development.

9.
BMC Complement Med Ther ; 23(1): 332, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730604

RESUMO

BACKGROUND: Cerebral malaria is one of the most serious complications of Plasmodium infection and causes behavioral changes. However, current antimalarial drugs have shown poor outcomes. Therefore, new antimalarials with neuroprotective effects are urgently needed. This study aimed to evaluate the effects of selected extracts as monotherapy or adjunctive therapy with artesunate on antimalarial, anti-inflammatory, antioxidant, and neuroprotective properties in experimental cerebral malaria (ECM). METHODS: ECM was induced in male C57BL/6 mice by infection with Plasmodium berghei ANKA (PbA). Ethanolic extracts of Atractylodes lancea (a dose of 400 mg/kg) and Prabchompoothaweep remedy (a dose of 600 mg/kg) were evaluated as monotherapy and adjunctive therapy combined with artesunate at the onset of signs of cerebral malaria and continued for 7 consecutive days. Parasitemia, clinical scores, and body weight were recorded throughout the study. At day 13 post-infection, mouse brains were dissected and processed for the study of the inflammatory response, oxidative stress, blood-brain barrier (BBB) integrity, histopathological changes, and neurocognitive impairments. RESULTS: Ethanolic extracts of A. lancea and Prabchompoothaweep remedy alone improved cerebral malaria outcome in ECM, whereas artesunate combined with extracts of A. lancea or Prabchompoothaweep remedy significantly improved the outcome of artesunate and crude extracts alone. Using real-time PCR, PbA-infected mice that had received the combination treatment showed significantly reduced gene expression of inflammatory cytokines (TNF-α, IL-1ß, IL-6, and IL-10), chemokines (CXCL4 and CXCL10), and adhesion molecules (ICAM-1, VCAM1, and CD36). The PbA-infected mice that received the combination treatment showed a significantly decreased malondialdehyde level compared to the untreated group. Similarly, the Evans blue dye assay revealed significantly less dye extravasation in the brains of infected mice administered the combination treatment, indicating improved BBB integrity. Combination treatment improved survival and reduced pathology in the PbA-infected group. Additionally, combination treatment resulted in a significantly reduced level of cognitive impairment, which was analyzed using a novel object recognition test. CONCLUSIONS: This study demonstrated that artesunate combined with A. lancea or Prabchompoothaweep remedy extracts as adjunctive therapy reduced mortality, neuroinflammation, oxidative stress, BBB integrity protection, and neurocognitive impairment in the ECM.


Assuntos
Antimaláricos , Atractylodes , Malária Cerebral , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Artesunato , Malária Cerebral/tratamento farmacológico , Antimaláricos/farmacologia
10.
Bioengineering (Basel) ; 10(8)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37627776

RESUMO

Dermatomyositis (DM) is an autoimmune disease that is classified as a type of idiopathic inflammatory myopathy, which affects human skin and muscles. The most common clinical symptoms of DM are muscle weakness, rash, and scaly skin. There is currently no cure for DM. Genetic factors are known to play a pivotal role in DM progression, but few have utilized this information geared toward drug discovery for the disease. Here, we exploited genomic variation associated with DM and integrated this with genomic and bioinformatic analyses to discover new drug candidates. We first integrated genome-wide association study (GWAS) and phenome-wide association study (PheWAS) catalogs to identify disease-associated genomic variants. Biological risk genes for DM were prioritized using strict functional annotations, further identifying candidate drug targets based on druggable genes from databases. Overall, we analyzed 1239 variants associated with DM and obtained 43 drugs that overlapped with 13 target genes (JAK2, FCGR3B, CD4, CD3D, LCK, CD2, CD3E, FCGR3A, CD3G, IFNAR1, CD247, JAK1, IFNAR2). Six drugs clinically investigated for DM, as well as eight drugs under pre-clinical investigation, are candidate drugs that could be repositioned for DM. Further studies are necessary to validate potential biomarkers for novel DM therapeutics from our findings.

11.
Pak J Pharm Sci ; 36(2): 477-482, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37530155

RESUMO

Pharmacological activities of seaweed, including its antioxidant effect, have been demonstrated and can protect macromolecules from xenobiotic-induced damage. Understanding the potency of seaweed as a hepatoprotection and its toxicity remains underexplored. The aims of this study were to investigate the antioxidant and hepatoprotective activity, as well as the toxicological potencies of S. polycystum ethyl acetate extract against carbon tetrachloride-induced liver damage in rats. Total phenolic content and total flavonoid contents were quantified using standard spectroscopy-based methods. The antioxidant activity was measured using 1,1-Diphenyl- 2-picryl Hydrazil scavenging radical, while the composition of compounds was identified by LCMS/MS. After seven days of post-administrated rats with S. polycystum ethyl acetate extract, the serum glutamic oxaloacetic transaminase (SGOT) and serum glutamic pyruvate transaminase (SGPT) levels were tested. Total phenolic content, total flavonoid content and IC50 of S. polycystum ethyl acetate extract were 1.28±0.04 of GAE/g, 13.32±0.48 QE/g and 744.726µg/mL, respectively. S. polycystum ethyl acetate extract 150mg/kg BW provides a hepatoprotective effect with a significant improvement in the levels of SGOT (134.845 U/l±9.645) and SGPT (60.238 U/l ± 9.645) (p<0.05). S. polycystum ethyl acetate extract potentially protected the damage induced by CCl4 in the rat's liver at a certain concentration, while a higher extract concentration requires further examination.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Hepatopatias , Sargassum , Ratos , Animais , Extratos Vegetais/farmacologia , Tetracloreto de Carbono/toxicidade , Alanina Transaminase , Indonésia , Antioxidantes/farmacologia , Fenóis/farmacologia , Fígado , Flavonoides/farmacologia , Aspartato Aminotransferases , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle
12.
Front Pharmacol ; 14: 1222195, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37533631

RESUMO

Zingiber and Alpinia species (family: Zingiberaceae) are popularly used in food as spices and flavoring agents and in ethnomedicine to heal numerous diseases, including immune-related disorders. However, their ethnomedicinal uses have not been sufficiently supported by scientific investigations. Numerous studies on the modulating effects of plants and their bioactive compounds on the different steps of the immune system have been documented. This review aimed to highlight up-to-date research findings and critically analyze the modulatory effects and mechanisms of the extracts and secondary compounds of several Zingiber and Alpinia species, namely, Zingiber officinale Roscoe, Z. cassumunar Roxb., Z. zerumbet (L.) Roscoe ex Sm., Alpinia galanga Linn., A. conchigera Griff, A. katsumadai Hayata, A. oxyphylla Miq., A. officinarum Hance, A. zerumbet (Pers.) Burtt. et Smith, and A. purpurata (Viell.) K. Schum. on the immune system, particularly via the inflammation-related signaling pathways. The immunomodulating activities of the crude extracts of the plants have been reported, but the constituents contributing to the activities have mostly not been identified. Among the extracts, Z. officinale extracts were the most investigated for their in vitro, in vivo, and clinical effects on the immune system. Among the bioactive metabolites, 6-, 8-, and 10-gingerols, 6-shogaol, and zerumbone from Zingiber species and cardamomin, 1'-acetoxychavicol acetate, yakuchinone, rutin, 1,8-cineole, and lectin from Alpinia species have demonstrated strong immunomodulating effects. More experimental studies using cell and animal models of immune-related disorders are necessary to further understand the underlying mechanisms, together with elaborate preclinical pharmacokinetics, pharmacodynamics, bioavailability, and toxicity studies. Many of these extracts and secondary metabolites are potential candidates for clinical development in immunomodulating agents or functional foods to prevent and treat chronic inflammatory disorders.

13.
Biotechnol J ; 18(10): e2300008, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37300817

RESUMO

Biofilm-associated infections are a critical element in infectious diseases and play an important role in antibiotic resistance. Biosynthesized gold nanoparticles (AuNPs) using ethanolic extract of Musa sapientum unripe fruit were performed. The nanoparticles demonstrated an absorption peak at 554 nm with particle sizes ranging from 5.45 to 104.44 nm. High negative zeta potential value of -33.97 mV confirmed the high stability of AuNPs. The presence of bioconstituents responsible for capping and stabilization was indicated by intensity changes of several peaks from Fourier-transform infrared spectroscopy analysis. The minimum inhibitory concentrations (MIC) of the biosynthesized AuNPs against important pathogens ranged from 10 to 40 µg mL-1 . Synthesized nanoparticles at 0.062 to 0.5 × MIC significantly inhibited biofilm formation in all the tested microorganisms (p < 0.05). Scanning electron microscopy and confocal scanning laser microscopy images clearly illustrated in disruption and architectural changes of microbial biofilms at sub-MIC of biosynthesized AuNPs. Excellent antioxidant and antityrosinase activities of AuNPs were observed. The biosynthesized AuNPs at 20 µg mL-1 significantly inhibited nitric oxide production by 93% in lipopolysaccharide-stimulated RAW 264.7 cells, compared with control (p < 0.05). The biosynthesized AuNPs at 0.6 to 40 µg mL-1 demonstrated no toxic effects on L929 fibroblast cells.

14.
Sci Rep ; 13(1): 10032, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37340026

RESUMO

Diabetic foot ulcers (DFUs) are a common complication of diabetes and can lead to severe disability and even amputation. Despite advances in treatment, there is currently no cure for DFUs and available drugs for treatment are limited. This study aimed to identify new candidate drugs and repurpose existing drugs to treat DFUs based on transcriptomics analysis. A total of 31 differentially expressed genes (DEGs) were identified and used to prioritize the biological risk genes for DFUs. Further investigation using the database DGIdb revealed 12 druggable target genes among 50 biological DFU risk genes, corresponding to 31 drugs. Interestingly, we highlighted that two drugs (urokinase and lidocaine) are under clinical investigation for DFU and 29 drugs are potential candidates to be repurposed for DFU therapy. The top 5 potential biomarkers for DFU from our findings are IL6ST, CXCL9, IL1R1, CXCR2, and IL10. This study highlights IL1R1 as a highly promising biomarker for DFU due to its high systemic score in functional annotations, that can be targeted with an existing drug, Anakinra. Our study proposed that the integration of transcriptomic and bioinformatic-based approaches has the potential to drive drug repurposing for DFUs. Further research will further examine the mechanisms by which targeting IL1R1 can be used to treat DFU.


Assuntos
Diabetes Mellitus , Pé Diabético , Humanos , Pé Diabético/tratamento farmacológico , Pé Diabético/genética , Reposicionamento de Medicamentos , Transcriptoma
15.
BMC Complement Med Ther ; 23(1): 144, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37143036

RESUMO

BACKGROUND: Kheaw Hom remedy is a traditional Thai medicine used to treat fever. Some plants used in the Kheaw Hom remedy show promising in vitro antimalarial activity. This study prepared novel formulations of plants from the Kheaw Hom remedy and evaluated their antimalarial and toxicological activities. METHODS: Seven new formulations were prepared by combining at least three herbs of six selected plants from the Kheaw Hom remedy, namely Mammea siamensis Kosterm., Mesua ferrea L., Dracaena loureiroi Gagnep., Pogostemon cablin (Blanco) Benth., Kaempferia galanga L, and Eupatorium stoechadosmum Hance. In vitro antimalarial activities of each formulation's aqueous and ethanolic extracts were evaluated using the parasite lactate dehydrogenase (pLDH) assay. Cytotoxicity in Vero and HepG2 cells was assessed using the MTT assay. An extract with good antimalarial potency and selectivity index (SI) was selected for in vivo antimalarial activity using Peter's 4-day suppressive test and acute oral toxicity test in mice. In addition, bioactive compounds were identified using Gas chromatography-mass spectrometry (GC-MS) analysis. RESULTS: Among the seven new formulations, ethanolic extracts of CPF-1 (Formulation 1) showed the highest activity with an IC50 value of 1.32 ± 0.66 µg/ml, followed by ethanolic extracts of Formulation 4 and Formulation 6 with an IC50 value of 1.52 ± 0.28 µg/ml and 2.48 ± 0.34 µg/ml, respectively. The highest SI values were obtained for the ethanolic extract of CPF-1 that was selected to confirm its in vivo antimalarial activity and toxicity. The results demonstrated a significant dose-dependent reduction in parasitemia. Maximum suppressive effect of the extract (72.01%) was observed at the highest dose administered (600 mg/kg). No significant toxicity was observed after the administration of 2000 mg/kg. Using GC-MS analysis, the most abundant compound in the ethanolic extract of CPF-1 was ethyl p-methoxycinnamate (14.32%), followed by 2-propenoic acid, 3-phenyl-, ethyl ester, (E)- (2.50%), and pentadecane (1.85%). CONCLUSION: The ethanolic extract of CPF-1 showed promising in vitro and in vivo antimalarial efficacy, with no toxic effects at a dose of 2000 mg/kg, suggesting that the ethanolic extract of CPF-1 may serves as a new herbal formulation for the treatment of malaria. Additional research is required for safety and clinical pharmacology studies.


Assuntos
Antimaláricos , Malária , Animais , Camundongos , Antimaláricos/toxicidade , Extratos Vegetais/química , Malária/tratamento farmacológico , Malária/parasitologia , Medicina Tradicional
16.
Food Sci Technol Int ; : 10820132231178060, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37218156

RESUMO

Foodborne pathogens may cause foodborne illness, which is among the major health problems worldwide. Since the therapeutic options for the treatment of the disease are becoming limited as a result of antibacterial resistance, there is an increasing interest to search for new alternatives of antibacterial. Bioactive essential oils from Curcuma sp become potential sources of novel antibacterial substances. The antibacterial activity of Curcuma heyneana essential oil (CHEO) was evaluated against Escherichia coli, Salmonella typhi, Shigella sonnei, and Bacillus cereus. The principal constituents of CHEO are ar-turmerone, ß-turmerone, α-zingiberene, α-terpinolene, 1,8-cineole, and camphor. CHEO exhibited the strongest antibacterial activity against E. coli with a MIC of 3.9 µg/mL, which is comparable to that of tetracycline. The combination of CHEO (0.97 µg/mL) and tetracycline (0.48 µg/mL) produced a synergistic effect with a FICI of 0.37. Time-kill assay confirmed that CHEO enhanced the activity of tetracycline. The mixture disrupted membrane permeability of E. coli and induced cell death. CHEO at MIC of 3.9 and 6.8 µg/mL significantly reduced the formation of biofilm in E. coli. The findings suggest that CHEO has the potential to be an alternative source of antibacterial agents against foodborne pathogens, particularly E. coli.

17.
Chem Biodivers ; 20(6): e202201205, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37202876

RESUMO

Pseudomonas aeruginosa can regulate its pathogenicity via quorum sensing (QS) system. Zingiber cassumunar and Z. officinale have been used for the treatment of infectious diseases. The study aimed to evaluate and compare the chemical constituents, antibacterial, and QS inhibitor of Z. cassumunar essential oils (ZCEO) and Z. officinale essential oils (ZOEO). The chemical constituent was analysed using GC/MS. Broth microdilution and spectrophotometry analysis were used to evaluate their antibacterial and QS inhibitor activities. The main constituent of ZOEO with percent composition above 6 % (α-curcumene, α-zingiberene, ß-sesquiphellandrene, and ß-bisabolene, α-citral, and α-farnesene) were exist in a very minimal percentage less than 0.7 % in Z. cassumunar. All major components of ZCEO with percentages higher than 5 % (terpinen-4-ol, sabinene, γ-terpinene) were present in low proportion (<1.18 %) in Z. officinale. ZCEO demonstrated moderate antibacterial activity against P. aeruginosa. The combination of ZCEO and tetracycline showed a synergistic effect (FICI of 0.5). ZCEO exhibited strong activity in inhibiting biofilm formation. ZCEO at 1 / 2 ${{ 1/2 }}$ MIC (62.5 µg/mL) was able to reduce pyoverdine, pyocyanin, and proteolytic activity. This is the first report on the activity of ZCEO in the inhibition of P. aeruginosa QS system and it may be used to control the pathogenicity of P. aeruginosa.


Assuntos
Óleos Voláteis , Zingiberaceae , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Percepção de Quorum , Pseudomonas aeruginosa , Zingiberaceae/química , Antibacterianos/farmacologia , Antibacterianos/química , Biofilmes
18.
Adv Pharmacol Pharm Sci ; 2023: 2259534, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36860376

RESUMO

Multidrug-resistant bacteria have raised global concern about the inability to fight deadly infectious diseases. Methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa are the most common resistant bacteria that are causing hospital infections. The present study was undertaken to investigate the synergistic antibacterial effect of the ethyl acetate fraction of Vernonia amygdalina Delile leaves (EAFVA) with tetracycline against the clinical isolates MRSA and P. aeruginosa. Microdilution was used to establish the minimum inhibitory concentration (MIC). A checkerboard assay was conducted for the interaction effect. Bacteriolysis, staphyloxanthin, and a swarming motility assay were also investigated. EAFVA exhibited antibacterial activity against MRSA and P. aeruginosa with a MIC value of 125 µg/mL. Tetracycline showed antibacterial activity against MRSA and P. aeruginosa with MIC values of 15.62 and 31.25 µg/mL, respectively. The interaction between EAFVA and tetracycline showed a synergistic effect against MRSA and P. aeruginosa with a Fractional Inhibitory Concentration Index (FICI) of 0.375 and 0.31, respectively. The combination of EAFVA and tetracycline induced the alteration of MRSA and P. aeruginosa, leading to cell death. Moreover, EAFVA also inhibited the quorum sensing system in MRSA and P. aeruginosa. The results revealed that EAFVA enhanced the antibacterial activity of tetracycline against MRSA and P. aeruginosa. This extract also regulated the quorum sensing system in the tested bacteria.

19.
BMC Complement Med Ther ; 23(1): 12, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36653791

RESUMO

BACKGROUND: Drug resistance exists in almost all antimalarial drugs currently in use, leading to an urgent need to identify new antimalarial drugs. Medicinal plant use is an alternative approach to antimalarial chemotherapy. This study aimed to explore potent medicinal plants from Prabchompoothaweep remedy for antimalarial drug development. METHODS: Forty-eight crude extracts from Prabchompoothaweep remedy and its 23 plants ingredients were investigated in vitro for antimalarial properties using Plasmodium lactate dehydrogenase (pLDH) enzyme against Plasmodium falciparum K1 strain and toxicity effects were evaluated in Vero cells. The plant with promising antimalarial activity was further investigated using gas chromatography-mass spectrometry (GC-MS) to identify phytochemicals. Antimalarial activity in mice was evaluated using a four-day suppressive test against Plasmodium berghei ANKA at dose of 200, 400, and 600 mg/kg body weight, and acute toxicity was analyzed. RESULTS: Of the 48 crude extracts, 13 (27.08%) showed high antimalarial activity against the K1 strain of P. falciparum (IC50 <  10 µg/ml) and 9 extracts (18.75%) were moderately active (IC50 = 11-50 µg/ml). Additionally, the ethanolic extract of Prabchompoothaweep remedy showed moderate antimalarial activity against the K1 strain of P. falciparum (IC50 = 14.13 µg/ml). Based on in vitro antimalarial and toxicity results, antimalarial activity of the aqueous fruit extract of Terminalia arjuna (IC50 = 4.05 µg/ml and CC50 = 219.6 µg/ml) was further studied in mice. GC-MS analysis of T. arjuna extract identified 22 compounds. The most abundant compounds were pyrogallol, gallic acid, shikimic acid, oleamide, 5-hydroxymethylfurfural, 1,1-diethoxy-ethane, quinic acid, and furfural. Analysis of the four-day suppressive test indicated that T. arjuna extract at dose of 200, 400, and 600 mg/kg body weight significantly suppressed the Plasmodium parasites by 28.33, 45.77, and 67.95%, respectively. In the acute toxicity study, T. arjuna extract was non-toxic at 2000 mg/kg body weight. CONCLUSIONS: The aqueous fruit extract of T. arjuna exerts antimalarial activity against Plasmodium parasites found in humans (P. falciparum K1) and mice (P. berghei ANKA). Acute toxicity studies showed that T. arjuna extract did not show any lethality or adverse effects up to a dose of 2000 mg/kg.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Plantas Medicinais , Humanos , Chlorocebus aethiops , Animais , Camundongos , Antimaláricos/toxicidade , Antimaláricos/química , Plantas Medicinais/química , Malária/tratamento farmacológico , Malária/parasitologia , Extratos Vegetais/toxicidade , Extratos Vegetais/química , Células Vero , Malária Falciparum/tratamento farmacológico , Peso Corporal
20.
Phytother Res ; 37(3): 1036-1056, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36343627

RESUMO

The worldwide spreading of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a serious threat to health, economic, environmental, and social aspects of human lives. Currently, there are no approved treatments that can effectively block the virus although several existing antimalarial and antiviral agents have been repurposed and allowed use during the pandemic under the emergency use authorization (EUA) status. This review gives an updated overview of the antiviral effects of phytochemicals including alkaloids, flavonoids, and terpenoids against the COVID-19 virus and their mechanisms of action. Search for natural lead molecules against SARS-CoV-2 has been focusing on virtual screening and in vitro studies on phytochemicals that have shown great promise against other coronaviruses such as SARS-CoV. Until now, there is limited data on in vivo investigations to examine the antiviral activity of plants in SARS-CoV-2-infected animal models and the studies were performed using crude extracts. Further experimental and preclinical investigations on the in vivo effects of phytochemicals have to be performed to provide sufficient efficacy and safety data before clinical studies can be performed to develop them into COVID-19 drugs. Phytochemicals are potential sources of new chemical leads for the development of safe and potent anti-SARS-CoV-2 agents.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Antivirais/farmacologia , Compostos Fitoquímicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...